EmPower COO Greg Sachs Graduates MIT, Publishes Smart Grid Design & Evolution Thesis

Having recently graduated from the System Design & Management (SDM) program at MIT, EmPower’s Chief Operating Officer Greg Sachs published his thesis on Next Generation Smart Grid Systems. SDM is a joint program with the Sloan School of Management and Engineering School at MIT, where a core concept is that of defining “System Architecture”, which provide a toolset for designing and optimizing complex systems. Greg’s program emphasis was on the technical and business aspects of renewable energy generation and power distribution.
The following is the abstract of his thesis, and you can download the whole report by clicking here.

Greg Sachs: A System Architect’s Basic Guide to Understanding & Designing Next Generation Grid Systems

A strong and growing desire exists, throughout society, to consume electricity from clean and renewable energy sources, such as solar, wind, biomass, geothermal, and others. Due to the intermittent and variable nature of electricity from these sources, our current electricity grid is incapable of collecting, transmitting, and distributing this energy effectively.

The “Smart Grid” is a term which has come to represent this ‘next generation’ grid, capable of delivering, not only environmental benefits, but also key economic, reliability and energy security benefits as well. Due to the high complexity of the electricity grid, a principle based System Architecture framework is presented as a tool for analyzing, defining, and outlining potential pathways for infrastructure transformation. Through applying this framework to the Smart Grid, beneficiaries and stakeholders are identified, upstream and downstream influences on design are analyzed, and a succinct outline of benefits and functions is produced.

The first phase of grid transformation is establishing a robust communications and measurement network. This network will enable customer participation and increase energy efficiency through smart metering, real time pricing, and demand response programs.

As penetration of renewables increases, the high variability and uncontrollability of additional energy sources will cause significant operation and control challenges. To mitigate this variability reserve margins will be adjusted and grid scale energy storage (such as compressed air, flow batteries, and plugin hybrid electric vehicles or PHEV’s) will begin to be introduced. Achieving over 15% renewable energy penetration marks the second phase of transformation.

The third phase is enabling mass adoption, whereby over 40% of our energy will come from renewable sources. This level of penetration will only be achieved through fast supply and demand balancing controls and large scale storage. Robust modeling must be developed to test various portfolio configurations.

Say goodbye to high-energy bills and hello to worry-free solar

Say goodbye to high-energy bills and hello to worry-free solar

Learn More

Get a Free Solar Estimate